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Abstract We first provide an overview of some predominant theoretical methods currently used
for predicting thermal conductivity of thin dielectric films: the equation of radiative transfer, the
temperature-dependent thermal conductivity theories based on the Callaway model, and the
molecular dynamics simulation. This overview also highlights temporal and spatial scale issues by
looking at a unified theory that bridges physical issues presented in the Fourier and Cattaneo
models. This newly developed unified theory is the so-called C- and F-processes constitutive model.
This model introduces the notion of a new dimensionless heat conduction model number, which is
the ratio of the thermal conductivity of the fast heat carrier F-processes to the total thermal
conductivity comprised of both the fast heat carriers F-processes and the slow heat carriers
C-processes. Illustrative numerical examples for prediction of thermal conductivity in thin films are
primarily presented.

Introduction
Experimental measurements show that the thermal conductivity of very thin
films is one to several orders of magnitude smaller than that of its bulk
counterpart (Lambropoulos et al., 1989). Many researchers have attempted to
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explain theoretically these experimental results. Fourier law, traditionally used
to describe the behavior of macroscopic results, is unfortunately unable to
duplicate accurately the experimental results at the microscale and nanoscale
limits. This has opened the door to the field of microscale and nanoscale heat
transfer. This paper provides an overview of the theoretical advancements with
focus on heat conduction and the associated constitutive models, focusing on
the prediction of thermophysical properties such as the thermal conductivity at
small length scales.

Spatial and temporal regimes in heat conduction
Quantum mechanics has helped us to recognize that solids are composed of
several discrete particles (electrons, neutrons and protons) at the microscopic
level. Depending on the type of solid, different particles carry heat across the
material in different ways and are therefore called heat carriers. Modeling the
spatial and temporal regimes in materials can be broadly subdivided into four
regimes (Zhigilei, 2002):

(1) macroscale;

(2) mesoscale;

(3) microscale; and

(4) nanoscale.

The characteristic lengths and times for these regimes are shown in Table I.
In heat conduction, two major areas have been prominent:

(1) the macroscale, which involves the modeling of macroscale effects; and

(2) the microscale, which encompasses all the other regimes in materials
modeling.

The macroscale formulation in heat conduction is based on the continuum
assumption. It does not consider the size and time dependence of the heat
transport. Heat is assumed to be carried by the atoms. The microscale
formulation in heat conduction considers the physical mechanisms of heat
transport through heat carriers where size and time dependence are crucial.
This leads to the explanation of several parameters that characterize the
microscopic regimes in both temporal and spatial regimes.

Regime Characteristic length (m) Characteristic time (s)

Macroscale $1023 $1023

Mesoscale ,1024-1027 ,1023-1029

Microscale ,1026-1028 ,1028-10211

Nanoscale ,1027-1029 ,10210-10214

Source: Zhigilei, (2002)

Table I.
Characteristic lengths

and times in materials
modeling
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Microscopic in time – heat conduction. The important time parameters that
govern the microscopic heat transport are (Goodson and Flik, 1992):

. the thermalization time – the time for the electrons and lattice to reach
equilibrium;

. the diffusion time – the time taken by the heat information to travel
through the specimen;

. the relaxation time – the time associated with the speed at which a
thermal disturbance moves through the specimen;

. the heating time – the time that an external source heats the specimen;
and;

. the physical process time – the total time duration of interest.

When the physical process time is comparable to any of the times described
earlier, the time effect becomes important and the process is considered to be
microscopic in time. When the heating time is of the order of the thermalization
time, the energy deposition must be considered. The immediate question that
naturally arises from this consideration is the following. Is the energy
deposited in the lattice, the electron, or both? Finally, when the heating time is
comparable to the diffusion time or the relaxation time, a finite speed of the
thermal propagation must be considered.

Microscopic in size – heat conduction. The important size parameters that
govern the heat transport in a specimen are (Goodson and Flik, 1992):

. the mean free path (l); and

. the characteristic dimension of the material (L).

When the mean free path is much less than the characteristic dimension of
the material ðl ! LÞ; the heat transport is said to be macroscopic. Fourier
law is then applicable and the transport is governed by a purely diffusive
nature. When the mean free path is of the order of or much greater than the
characteristic dimension of the material ðl , L or l @ LÞ; the heat
transport is said to be microscopic. Here, Fourier law breaks down and the
transport shifts from a partially diffusive-ballistic to purely ballistic nature.
These limits can be observed in Figure 1. The size effects of thermal
conductivity were originally observed in 1938 in the experimental works of
Haas and Biermasz, and the theoretical explanation shortly followed in the
works of Casimir (Chen and Tien, 1993). Casimir identified that at the
purely ballistic regime a temperature gradient could not be established, and
according to the Fourier law, it was impossible to prescribe the thermal
conductivity. At the purely ballistic limit, it was observed that the
temperature at the boundaries, and not the temperature gradient within the
film, governs the heat transport. Since thermodynamic equilibrium is
restored due to the scattering of particles from the boundaries, the heat
conduction by these particles is suggested to be similar to photons and can
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be analyzed as a radiative transfer model where the heat flux across the
specimen can be described by:

q ¼ s T4
1 2 T4

2

� �
ð1Þ

where s is the Stefan-Boltzmann constant for the heat carrier, and T1 and
T2 are the temperatures of the faces of a thin film. This is commonly
referred to as the Casimir limit.

Prediction of thermal conductivity
Thermal conductivity is one of the hardest transport coefficients to calculate
(Evans and Morriss, 1990). To date, several groups (Che et al., 2000; Chen, 1997;
Goodson et al., 1995; Graebner et al., 1994; Lambropoulos et al., 1991; Lukes
et al., 2000; Majumdar, 1993; Maruyama, 2000; Osman and Srivastava, 2001;
Schelling et al., 2002; Volz and Chen, 1999) have chosen different approaches in
order to predict the thermal conductivity of thin dielectric films, superlattices,
nanowires and more recently nanotubes. These paths have their roots based on
two major areas:

(1) the Boltzmann transport equation (BTE); and

(2) the molecular dynamics (MD) simulation.

The BTE has been extensively studied and has provided models shown to be
appropriate for a class of thermal conductivity predictions at the microscopic
level (Chen, 2000; Goodson et al., 1995; Graebner et al., 1994; Majumdar, 1993).
However, more recently, the use of MD simulations for thermal conductivity
prediction has been closely investigated (Lukes et al., 2000; Maruyama, 2002;
Osman and Srivastava, 2001; Schelling et al., 2002; Volz and Chen, 1999). The
focus of this section is to provide an overview of the two theories.

In the next section, we discuss three predominant approaches that have been
derived from the BTE. The first two, the modified Callaway/Holland’s models
and the equation of phonon radiative transfer (EPRT), have previously been

Figure 1.
Comparison of

propagation methods
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used in the prediction of the thermal conductivity of thin dielectric films.
The third is the newly developed C- and F-processes model which introduces
the notion of a new dimensionless heat conduction model number. After
discussing these approaches, we also present an overview of the MD simulation
for thermal conductivity prediction of thin films and nanocarbon tubes.

BTE
The heart of heat transport theory is the BTE. The BTE determines the status
of a particle via its location and velocity. The most general form of the BTE
(Vincenti and Kruger, 1977) is given as

›f

›t
þ v ·7f þ a ·

›f

›v
¼

›f

›t

� �
scatt

ð2Þ

where f ð~r;T;v) is the non-equilibrium thermodynamic distribution function,
v(v) is the phonon velocity (that is, the speed of sound in dielectrics), a(v) is the
particle acceleration and t is time. The first term in equation (2) represents the
net rate of particles over time, the second term is the convective inflow of
particles in physical space, the third term is the net convective inflow due to
acceleration in velocity space, and the term on the right hand side is the net rate
of change of particles inside a control volume due to collisions. The phonon
velocity in a dielectric material is fairly constant over a large frequency range,
thus ›f/›v can be neglected. Both energy and temperature gradients tend to
disturb the electron distribution, and this tendency is opposed by processes
that restore equilibrium, such as the scattering of electrons or phonons by
lattice vibrations and crystal defects. As a result, the scattering term is
approximated under the relaxation-time approximation (Kittel, 1996) as,

›f

›t

� �
scatt

¼
›ðf 2 f 0Þ

›t
¼

f 0 2 f

t
ð3Þ

where f 0ð~r;T;v) is the thermodynamic distribution at equilibrium
(Bose-Einstein distribution for boson particles (such as phonons), and
Fermi-Dirac distribution for fermion particles (such as electrons), ›f 0=›t ¼ 0;
and t (v, v) is the rate of return to equilibrium and is called the relaxation time.

Kinetic theory is derived from the BTE under the premise that there is local
thermal dynamic equilibrium (LTE) (Ashcroft and Mermin, 1976). In cases
where LTE is not achieved, one solves the BTE. However, in the presence of a
temperature gradient, the LTE is implied, and as an illustration of the
one-dimensional diffusion term in equation (2), ›f=›x , ›f 0=›x; and the ›f/›x
term can be approximated as (Callaway, 1959)

›f

›x
¼

df 0

dT

dT

dx
ð4Þ

The flux of particles is given by (Kittel, 1996)
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qðxÞ ¼

Z vD

0

vxf ðxÞ"vDðvÞ dv ð5Þ

The transient one-dimensional BTE under the relaxation-time approximation
and the temperature gradient approximation is given by

›f

›t
þ vx

df 0

dT

dT

dx
¼

f 0 2 f ðxÞ

t
ð6Þ

As the temperature of a material is increased or decreased, these particles
interact and collide with each other in order to return the system back to
thermodynamic equilibrium (the mean time associated with these scattering
processes is the relaxation time (t), and the mean distance associated with these
scattering processes is the mean free path (l)).

Solving the BTE is difficult. The relaxation-time approximation is a widely
used simplification to its solution in thermal conductivity models. The
following models based on the relaxation-time approximation have either been
proposed or used to determine thermal conductivity in thin dielectric films:

. the newly proposed C- and F-processes model;

. the EPRT; and

. the modified Callaway/Holland’s models.

Derivation of the C- and F-processes model and the generalized one-step
temperature equation from the BTE. Another desire in the theoretical arena is
to provide fundamental concepts that can explain and bridge the Fourier and
Cattaneo limits. Beyond the ability to develop thermal conductivity models
from the BTE, several phenomenological constitutive models have been
physically explained by deriving from the BTE. Two of these models are the
Fourier and Cattaneo models. In order to obtain these constitutive models from
the BTE, the assumption that there exists a temperature gradient (implying
thermodynamic equilibrium) within the medium is made in addition to the
relaxation-time approximation (see equation (4)).

In an effort to provide a unified theory of heat conduction, the derivation of
the C- and F-processes model is based on the hypothesis that upon the
application of a temperature gradient, there simultaneously co-exist both slow
and fast processes associated with the heat carriers. This results in a linear
combination of the Fourier and Cattaneo “like’ processes based on the original
work by Tamma and Zhou (1998) but later extended by Zhou et al. (2001). This
model separates the heat carriers governed by slow processes from those
governed by fast processes at a reference threshold frequency. Hence, if we
consider a threshold frequency vT, which is time dependent, in the early
transient where low energy processes are separated from high energy
processes, then the total heat flux given in equation (5) can be modified to
account for the low-and high-energy processes as
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q ¼

Z vT

0

vxf ðxÞ"vDðvÞ dvþ

Z vD

vT

vxf ðxÞ"vDðvÞ dv ¼ qC þ qF ð7Þ

where we postulate a threshold frequency such that the integral up to a
threshold frequency vT involves the slow Cattaneo-like processes and yields a
heat flux associated with the slow moving processes qC (these processes are
believed to dominate the process early on), and that the integral from the
threshold to the Debye frequency, vD involves the fast Fourier-like processes
and yields a heat flux associated with the fast moving processes qF. The total
heat flux (q) is the combination of the Cattaneo-like (qC) and Fourier-like (qF)
heat fluxes.

In this regard, the transient BTE can be multiplied by vx"vDðvÞ and
integrated over the two separate frequency ranges yielding the following two
equations which are associated with the C-processes (Cattaneo-like) and the
F-processes (Fourier-like):Z vT

0

vx"vDðvÞ
›f

›t
dvþ

Z vT

0

v2
x"vDðvÞ

›f

›x
dv

¼

Z vT

0

vx"vDðvÞ
f 0 2 f

t

� �
dv ð8Þ

and Z vD

vT

vx"vDðvÞ
›f

›t
dvþ

Z vD

vT

v2
x"vDðvÞ

›f

›x
dv

¼

Z vD

vT

vx"vDðvÞ
f 0 2 f

t

� �
dv ð9Þ

In support of this hypothesis, next consider the Maxwell-Boltzmann,
Bose-Einstein, and Fermi-Dirac distribution functions shown in Figure 2
where the Fermi energy is set to zero. At high frequencies (or energies), the

Figure 2.
Occupancy probability
for the Fermi-Dirac, the
Bose-Einstein and the
Maxwell-Boltzmann
distributions
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effect of the Fermi-Dirac and the Bose-Einstein statistical functions are
eliminated and all distributions converge to a Maxwell-Boltzmann distribution.
At high frequencies the wavelength of the particle is short and the statistical
distinction is unimportant. Because of this statistical unimportance, it is
reasonable to assume that the termZ vD

vT

vx"vDðvÞ
›f

›t
dv ¼ 0;

due to the observation that the distribution function is fairly constant over time
for high frequencies. In other words, as the different distribution functions
reach their equilibrium positions, most of the change in the distribution
functions occurs at the lower frequencies, and the distributions at the high
frequency tail are fairly constant over time. Hence, the df/dt term in equation (9)
is neglected.

Also note that as time evolves, the threshold frequency must change as the
distributions reach these equilibrium stages. This is a similar analogy to the
change of the Fermi energy with temperature (Lee et al., 1973).

Now consider the notion of a non-dimensional heat conduction model
number, FT, which is physically depicted as (Tamma and Zhou, 1998)

FT ¼
KF

KF þ KC
ð10Þ

where KF is the conductivity due to the fast F-processes and KC is the
conductivity due to the slow C-processes.

Further, the following is defined

K ¼

Z vT

0

v2
xt

df 0

dT
"vDðvÞ dvþ

Z vD

vT

v2
xt

df 0

dT
"vDðvÞ dv ¼ KC þ KF ð11Þ

Next, introducing the non-dimensional heat conduction model number as the
following ratio, we have

FT ¼

Z vD

vT

v2
xt

df 0

dT
"vDðvÞ dvZ vD

0

v2
xt

df 0

dT
"vDðvÞ dv

ð12Þ

Upon application of the heat flux of particles given in equation (7) and the
thermal conductivity given in equation (11), equations (8) and (9) can be
reduced to the Fourier and Cattaneo processes as

qF ¼ 2KF
dT

dx
ð13Þ
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qC þ t
dqC

dt
¼ 2KC

dT

dx
ð14Þ

where the total heat flux, q, is given as q ¼ qC þ qF:
When the definition from equation (12) is introduced into these two previous

equations, then equations (7)-(9) finally yield the C- and F-processes heat
conduction constitutive model in terms of the heat conduction model
number as,

q ¼ qF þ qC ð15Þ

qF ¼ 2FTK
dT

dx
ð16Þ

qC þ t
dqC

dt
¼ 2ð1 2 FTÞK

dT

dx
ð17Þ

Alternatively, one could consider an underlying viewpoint as related to
non-equilibrium situations that could be implied in the C- and F-processes
model as follows:

TF ¼ FTT ð18Þ

TC ¼ ð1 2 FTÞT ð19Þ

where the total temperature, T, is given by T ¼ TF þ TC ¼ FTTþ
ð1 2 FTÞT:

Substituting these equations into the C- and F-processes model leads to the
notion of a non-equilibrium model:

q ¼ qF þ qC ð20Þ

qF ¼ 2K
dTF

dx
ð21Þ

qC þ t
dqC

dt
¼ 2K

dTC

dx
ð22Þ

In general, the C- and F-processes heat conduction constitutive model is
given by

qF ¼ 2KF7T ¼ 2FTK7T ¼ 2K7TF ð23Þ
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qC þ t
›qC

›t
¼ 2KC7T ¼ 2ð1 2 FTÞK7T ¼ 2K7TC ð24Þ

q ¼ qF þ qC ð25Þ

which explains the present derivation based on fundamental physical
principles emanating from the BTE.

In the above equations, q is the total heat flux due to the mechanism of heat
conduction (which is comprised of that associated with each of the Fourier-type
fast and Cattaneo-type slow processes), and K is the total conductivity which is
the sum of the Fourier (effective) conductivity, KF, and the Cattaneo (elastic)
conductivity, KC. Thus, K ¼ KF þ KC:

Also, FT [ ½0; 1� are the strict bounds which were introduced (Tamma and
Zhou, 1998) in the definition of each of the heat flux constitutive processes
characterizing the process of heat transport with evolution of time and termed
as the macroscale heat conduction model number whose physics should strictly
be adhered to and was defined earlier.

Note that the subscripts F and C pertain to the F-and C-processes and the
model acknowledges the co-existence of both finite and infinite speeds of
propagation of the thermal disturbances simultaneously.

Also note that when FT [ ð0; 1Þ; the combined representation of the C- and
F-processes model leads to the Jeffreys-type model; when ðFT ¼ 0Þ; the C- and
F-processes model naturally reduces to the Cattaneo model; and when ðFT ¼ 1Þ;
the C- and F-processes model naturally reduces to the Fourier model (this is
unlike the Jeffreys model which only reduces to a Fourier-like model).

As such, the proposition is that very early in the transient, the Cattaneo type
slow processes dominate, and subsequently with the passage of time, the
Fourier type fast processes dominate the heat conduction process. The heat
transport characterized by FT strictly varies with time starting from zero and
leading to a value of unity.

Note that the combined form of equations (16) and (17) leads to the Jeffreys
model and the associated temperature operator. In 1989, Joseph and Preziosi
(1989) correlated a theory from viscoelasticity to heat transfer. By substituting
the combined form of equations (16) and (17) into the energy equation, the
Generalized One-Step temperature formulation is obtained as

1

c2
T

›2T

›t 2
þ

1

a

›T

›t
¼

›2T

›x2
þ

1

K
S þ t

›S

›t

� �
þ tFT

›

›t

›2T

›x2

� �
ð26Þ

where the temperature propagation speed is given by cT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K=rCt

p
and a is

the thermal diffusivity.
It is interesting to mention that Majumdar (1993) has shown that the

Cattaneo model, which has been used to describe a heat propagation due to a
wave, is derived from the BTE by making the temperature gradient
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assumption that leads to Fourier law. The Cattaneo model is valid
microscopically for small time scales but it is not appropriate for use with
very thin films.

At the same time the C- and F-processes model was developed, Chen (2001)
independently developed the ballistic-diffusive (BD) model. It is noteworthy to
mention that analogous assumptions made to derive the C- and F-processes
model are made to derive the BD model. The assumptions in the original work
described by Tamma and Zhou (1998) treat the total distribution function by
splitting it into two contributions. Aspects of the derivation of the C- and
F-processes model is based on the temperature gradient assumption (the
derivation of the BD model is also based on the temperature gradient
assumption). While the C- and F-processes model provides accurate results for
small timescales and macroscopic material sizes, in light of recent results
obtained by the BD model (Chen, 2001; Yang and Chen, 2001), the C- and
F-processes model may also hold for microscopic material sizes, something that
is currently being investigated and we hope to disseminate relevant issues in
the near future.

EPRT. In thin dielectric films, the major heat carriers are phonons. The
thermodynamic equilibrium distribution for these carriers follows the
Bose-Einstein distribution, which is similar to the distribution of photons.
Under this premise the EPRT is originally described by Majumdar (1991) based
on the correlation between the radiation theory (i.e. the equation of radiative
transfer (ERT) and the transport theory in dielectric thin films. The major
assumption made in solving the transport properties in very thin films is that
the problem can be solved as a one-dimensional gray medium between black
walls at specified temperatures under radiative equilibrium. This condition
arises when a dielectric film is sandwiched between two metallic films. The
following is a detailed derivation of this theory.

The intensity of photons, that is, the radiation emitted in any direction by a
wave packet, is given by (Vincenti and Kruger, 1977)

I ðu;f;v; x; tÞ ¼
p

X
vðu;fÞf ðx; tÞ"vDðvÞ; ð27Þ

where the summation is over the photon polarizations, v(u,f) is the velocity
vector in the direction of u and f within a unit solid angle, "v is the energy at
which the photons propagate and D(v) is the density of states per unit volume.
The frequency dependency of the phonon intensity is eliminated by assuming
that the film medium acts as a gray body.

For cases where l@ L, the EPRT appears to model microscale aspects in
both time- and scale-limits. In these cases, the thermal conductivity for thin
films is obtained at steady-state due to scattering of phonons from the
boundaries, which returns the system to thermodynamic equilibrium. This
suggests that the heat conduction by phonons is similar to that of photons and
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thus can be analyzed as a radiative transfer problem (Ashcroft and Mermin,
1976, pp. 466-7).

Applying the analogy between photons and phonons and multiplying
equation (6) by vx"vDðvÞ and using the intensity definition (equation (27), the
EPRT is obtained as

›I ðx;mÞ

›t
þ vx

›I ðx;mÞ

›x
¼

I 0ðTðxÞÞ2 I ðx;mÞ

t
ð28Þ

where the velocity is in the direction of the phonon propagation vx ¼ vm; and
m ¼ cos u; u is the angle between the phonon propagation and the x-direction,
and I 0 is the equilibrium intensity.

At steady-state, equation (28) reduces to

vmt
›I ðx;mÞ

›x
þ I ðx;mÞ ¼ I 0ðTðxÞÞ ð29Þ

At this point, this equation has two unknowns, I(x,m) and I 0(T(x)). For steady
state, it is possible to reach a state of phonon radiative equilibrium where
7 · ~q ¼ 0: Integrating equation (29) over all directions ð21 , m , 1Þ and all
frequencies, we haveZ m¼1

m¼21

Z v¼vD

v¼0

vmt
›I ðx;mÞ

›x
þ I ðx;mÞ

� �
dv dm

¼

Z m¼1

m¼21

Z v¼vD

v¼0

I 0ðTðxÞÞ dv dm ð30Þ

The total radiation flux is expressed in terms of the intensity as (Sparrow, 1991,
p. 212)

qðxÞ ¼ 2p

Z 1

21

Z vD

0

mI ðx;mÞ dv dm ð31Þ

Hence, the first term in equation (30) is

vt

2p

dq

dx

and under radiative equilibrium it is zero. Since I 0 is analogous to the
blackbody intensity and is independent of direction, equation (30) yieldsZ m¼1

m¼21

Z v¼vD

v¼0

I ðx;mÞ
� �

dv dm ¼ 2

Z v¼vD

v¼0

I 0ðTðxÞÞ dv dm ð32Þ

By simplification, equation (32) provides I 0 as
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I 0ðTðxÞÞ ¼
1

2

Z m¼1

m¼21

Z v¼vD

v¼0

ðI ðx;mÞÞ dv dm ð33Þ

For temperatures lower than the Debye temperature the total blackbody
intensity is given by the Stefan-Boltzmann law and I 0 is found to be

I 0ðTðxÞÞ ¼
s

p
T 4ðxÞ ð34Þ

where s is the Stefan-Boltzmann constant.
The Stefan-Boltzmann constant was calculated for phonons as (Swartz and

Pohl, 1989)

s ¼
p2

40

k4
B

"3v2
ð35Þ

where kB is the Boltzmann constant, " is Planck’s constant divided by 2p, and
v is the speed of sound in solids. The Stefan-Boltzmann constant can also be
related to the specific heat as (Majumdar, 1993)

s ¼
Cv

16T 3
ð36Þ

When substituting the form of equation (34) into equation (29) the form of the
traditional and well known ERT is recovered where the medium is assumed to
absorb energy under radiative equilibrium with isotropic scattering (Özisik,
1973; Siegel and Howell, 1992).

The outside walls of the film are assumed to be black at specified
temperatures. This assumption is made since the dielectric material of real
solid-state devices, which may be comprised of several layers of films, is
between different metallic films. In metallic films the electron-phonon mean
free path is much smaller than the phonon mean free path in the dielectric films.
This leads to the assumption of thermalizing black boundaries at fixed
temperatures. The boundary conditions used for single thin film analysis are

I þð0;mÞ ¼
sT4

0

p
ð37Þ

I 2ðL;mÞ ¼
sT4

L

p
ð38Þ

where s is the Stefan-Boltzmann constant of the dielectric film, T0 is the
temperature at location x¼ 0, and TL is the temperature at the location x¼ L.

Majumdar (1993) analyzed the EPRT for both acoustically thin ðl @ LÞ and
acoustically thick ðl ! LÞ limits and shows that the EPRT does indeed provide
results that span both limiting cases where the Casimir and the Fourier laws
are applicable.
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Determination of the scattering mechanisms used in the EPRT. Heat
conduction in solids is well understood to follow the kinetic formula

K ¼
1

3
Cvsl ð39Þ

where K the thermal conductivity of an ensemble of heat carriers is given by
the total specific heat C, the average speed of the heat carriers vs, and the mean
free path l. The focus of this discussion is the thermal conduction of insulators
thus the heat carries of interest are phonons. Therefore, C is given by the Debye
formula, vs is the average velocity of sound which can be obtained from phonon
spectrums, and the problematic l can be obtained based on the discussion
below (note that the relaxation time is related to the mean free path as l¼ vst).

The overall trend in the determination of thermal conductivity as a function
of temperature is limited by the dependence of the scattering rates on
temperature. At high temperatures, the mean free path l/ 1=T: If vs is
assumed independent of temperature, then at high temperatures (well above
the Debye temperature), the specific heat is constant and we obtain the thermal
conductivity of a phonon, Kph / 1=T: However, the coefficient of
proportionality is difficult to determine (Ziman, 1960). At low temperatures,
the phonon-phonon scattering becomes unimportant and the mean free path
is limited by scattering with lattice defects where l ¼ limpurities which is
independent of temperature. Since vs is also independent of temperature, C is
proportional to T 3, and hence K is proportional to T 3 at low temperatures as
shown in Figure 3.

Figure 3.
Schematic of thermal
conductivity of CVD

diamond heat spreader
prepared at the

Fraunhofer Institute
(IAF). Comparison of

thermal conductivity of
copper and diamond at

high and low
temperature

approximations
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If the thermal conductivity of a material is known, it can be used to extract the
mean free path of thin films via the kinetic formula. This method is fairly
simple and can provide a quick estimation of the mean free path (Chen and
Tien, 1993-Chen, 1998). Therefore, the estimation of the l can be performed
from known bulk thermal conductivity values. However, this estimation of the
mean free path assumes that all phonons have the same energy and velocity.

Table II provides the prediction of l for a few dielectric materials under the
Debye approximation at room temperature. For amorphous materials, such as
SiO2, the Debye approximation is used, however, care must be taken since its
validity is still under extensive study (Zeng and Chen, 2001).

Finite element formulation of the EPRT. The steady-state form of the EPRT
under radiative equilibrium is given by

vmit
›I ðxj;miÞ

›xj
þ I ðxj;miÞ ¼

1

2

Z 1

21

I ðxj;m
*
i Þ dm* ð40Þ

where I(xj,mi) is the intensity of the phonon as a function of position x, and
direction m, m ¼ cos u; u is the angle of different directions of I (u ranges from 0
to 1808), and m* is just a dummy variable of integration.

The integral on the right hand side of equation (40) is approximated by
Gaussian quadrature as (Kumar et al., 1990)

I 0ðTðxÞÞ ¼

Z 1

21

I ðxj;m
*
i Þ dm* ¼

XNGP

k¼1

I jðmkÞwk ð41Þ

where mk are the discrete directions and wk the weighting factors. In a study,
conducted by Kumar et al. (1990), there are eight recommended directions,
therefore 16 Gauss points are used (eight Gauss points for the positive m
directions and eight Gauss points for the negative m directions). These data are
presented in Table III.

The ERT is well documented in radiation textbooks (Özisik, 1973; Siegel and
Howell, 1992; Sparrow, 1991). Özisik (1973) describes that the ERT has been
derived previously from the BTE and control volume techniques. Based on
similar development as the ERT, equation (29) can be written under the
two-flux model of radiative transfer as separate “+” and “2” contributions
(Siegel and Howell, 1992)

Material Specific heat £ 106 (J/m3 K) Velocity (m/s) l (Å)

Si 1.66 6,400 409
Ge 1.67 3,900 275
GaAs 1.71 3,700 208
SiO2 1.687 4,400 5.58
Diamond 1.81 13,500 3,929

Source: Chen (2000) and Zeng and Chen (2001).

Table II.
Phonon properties at
room temperature based
on the Debye model
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vtm
›I þðx;mÞ

›x
þ I þðx;mÞ ¼ I 0ðTðxÞÞ ð42Þ

and

vtm
›I 2ðx;mÞ

›x
þ I 2ðx;mÞ ¼ I 0ðTðxÞÞ ð43Þ

where equation (42) is valid for m. 0 and equation (43) for m , 0. Note that the
term vt is the definition for mean free path (l).

The finite-element method (FEM) has been previously employed to solve
pure radiation problems, and Razzaque et al. (1984) have modeled the ERT for a
particular two-dimensional case. However, the FEM has not been implemented
in the literature for the present form of the EPRT and recent efforts have been
described by Anderson and Tamma (2002). Assuming a linear approximation
for the intensity, I ¼ NjI j; the Galerkin FEM is applied to equation (30) asZ h

0

WjðxjÞvmit
›I ðxj;miÞ

›xj
dxþ

Z h

0

WjðxjÞI ðxj;miÞ dx

¼

Z h

0

WjðxjÞ
1

2

Z 1

21

I ðxj;m
*
i Þ dm*

� �
dx ð44Þ

where Wj(xj) is the weighting function and is assumed as Wj(xj)¼ Nj, where Nj

are the shape functions. For a two-noded linear element of size h,

Nj ¼ N 1 N 2

h i
ð45Þ

where N 1 ¼ 1 2 ðx=hÞ and N 2 ¼ x=h: Note that the right hand side of equation
(44) is approximated by Gaussian quadrature (equation (41)) which gives
values at each node and is a constant for each direction. Because the FEM is
formulated on an elemental basis the nodal values are averaged to obtain a
constant value for the element. Therefore,

Location (mi) Weight (wi)

^0.095012509837637 0.189450610455068
^0.281603550779258 0.182603415044923
^0.458016777657227 0.169156519395002
^0.617876244402643 0.149595988816576
^0.755404408355003 0.124628971255533
^0.865631202387831 0.095158511682492
^0.944575023073232 0.062253523938647
^0.989400934991649 0.027152459411754

Table III.
Data used for 16 Gauss

points in Gaussian
quadrature
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1

2

Z 1

21

I ðxj;m
*
i Þ dm*

is reduced to I 0
1 and I 0

2 for a two-noded linear finite-element and the constant for
the element is taken to be the average value

�
I 0

1 þ I 0
2

�
=2:

Introducing the elemental constant into the right hand side of equation (44),
the space-discretized representation yields

Z h

0

Nkvmit
›Nj

›xj
dxI j þ

Z h

0

NkNj dxI j ¼

Z h

0

Nk

I 0
1 þ I 0

2

2

 !
dx ð46Þ

For a typical two-noded linear element, for mi . 0; we have

vmit

2

21 1

21 1

" #
þ
h

6

2 1

1 2

" #" #
Iþ1 ðx1;miÞ

Iþ2 ðx2;miÞ

0
@

1
A ¼

I 0
1 þ I 0

2

2

 !
h

2

1

1

" #
ð47Þ

Similarly for mi , 0; we have

vmit

2

21 1

21 1

" #
þ

h

6

2 1

1 2

" #" #
I21 ðx1;miÞ

I22 ðx2;miÞ

 !
¼

I 0
1 þ I 0

2

2

 !
h

2

1

1

" #
ð48Þ

where h is the element size.
These equations are next solved for each direction (eight for mi . 0 and

eight for mi , 0). After determining the energy intensity at all locations, the
heat flux (equation (31)) and temperature (equation (34)) distribution profiles for
a single thin film are obtained by employing

qðxjÞ ¼ 2p
X8

i¼1

mi Iþi; jwi 2 I2i; jwi

� �
ð49Þ

and

TðxjÞ ¼
p

2s

X8

i¼1

Iþi;jwi þ I2i; jwi

� � !1
4

ð50Þ

For the cases analyzed, radiative equilibrium is assumed and to assess the
accuracy of the solution, the heat flux across the film must be constant (Jen and
Chieng, 1998; Majumdar, 1993) due to the radiative equilibrium assumption.

Finally, an effective thermal conductivity is obtained by invoking the form
of Fourier law (Jen and Chieng, 1998)
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Keff ¼
qðxjÞL

T0 2 TL
ð51Þ

where L is the thickness of the film, and T0 and TL are the imposed
temperatures at the top and bottom surfaces of the film, respectively.

Owing to the nature of the first term on the left hand side in equations (47)
and (48), numerical oscillatory behavior is observed and in order to stabilize
these oscillations, the number of elements used was increased. As the thickness
of the film is increased, the mesh needs to be refined. Unfortunately, known
procedures to stabilize such numerical oscillations as in convective flow
problems (i.e. upwinding) are not as straightforward for the first-order
integrodifferential EPRT. Further study in this area is currently underway.
Nonetheless, in this study a refined mesh was used as appropriate to yield
satisfactory results. The computational procedure for typical finite-difference
and FEMs is shown in Figure 4.

Callaway/Holland’s model. When the assumption that all phonons have the
same energy and velocity is not desired, it is possible to account for the phonon
dispersion where C, v, and l are frequency dependent. Equation (39) can be

Figure 4.
Computational procedure

for the numerical
methods used for solving
the EPRT for thin single

films
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modified by including the summation over all phonon branches (one
longitudinal and two transverse) and by integrating over the phonon spectrum
width of each branch as presented in the early works of Peierls in 1929,

K ¼
1

3 p

XZ
CðvÞvðvÞlðvÞ dv ð52Þ

The temperature-dependent thermal conductivities of silicon and germanium
films can be modeled based on the approximated solutions to the BTE where
the frequency-dependent relaxation times represent the phonon scattering
events. The most widely used model for determining the thermal conductivity
is a method first proposed by Callaway (1959) which assumes that the
N-processes dominate the scattering and the total thermal conductivity can be
expressed as a sum of K1 and K2

K1 ¼ HT 3

Z uD=T

0

J 4ðxÞtcðxÞ dx ð53Þ

K2 ¼ HT 3

Z uD=T

0
J 4ðxÞtcðxÞðtNðxÞÞ

21 dx

 !2

Z uD=T

0
J 4ðxÞtcðxÞðtNðxÞtRðxÞÞ

21 dx

ð54Þ

with

H ¼
k4

B

2p2"3vs
;

1

tc
¼

1

tN
þ

1

tR
; x ¼

"v

kBT
; J 4ðxÞ ¼

x4 ex

ðex 2 1Þ2

where t21
c is the combined relaxation rate which is the sum of normal (N) and

all resistive (R) scattering rates, uD the Debye temperature, x dimensionless
phonon angular frequency, v the phonon angular frequency, T the
temperature, kB the Boltzmann constant ð1:3807 £ 10223 J=KÞ; and " is the
Planck’s constant divided by 2p (1.05459 £10234 J s). Note that K1 is the Debye
model and K2 is the addition of the thermal resistivity when N-processes are
assumed to dominate the scattering (Berman, 1992).

The first modified form of Callaway’s model, known as Holland’s model
(Holland, 1963), assumes that K2 ¼ 0 and includes the three phonon
polarizations in K1

K1 ¼ KTO þ KTU þ KL ð55Þ

where

KTO ¼
2

3

Z uTO=T

0

CTT
3tTOðxÞJ 4ðxÞ dx ð56Þ
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KTU ¼
2

3

Z uTU=T

uTO=T

CTT
3tTUðxÞJ 4ðxÞ dx ð57Þ

KL ¼
1

3

Z uL=T

0

CLT
3tLðxÞJ 4ðxÞ dx ð58Þ

with

i ¼ TO;TU;L; ui ¼
"vi

kB
; Ci ¼

kB

2p2vi

� �
kB

"

� �3

where subscripts TO, TU, and L denote the low-frequency transverse,
high-frequency transverse, and longitudinal polarizations of the phonons,
respectively, ui are the temperature limits corresponding to the cut-off
frequencies of the different phonon modes and ti are the different scattering
mechanisms given as:

t21
TO ¼

BTvT
4 þ

vs

dgðz ¼ LÞ

1 2 pðvÞ

1 þ pðvÞ

� �
þ Av4; for P-type dopant

BTvT
4 þ

vs
dgðz ¼ LÞ

1 2 pðvÞ
1 þ pðvÞ

� �
þ Av4þ

2vs
pdgðzÞ

1 þ e
p
2ð Þ

2
Gðv; zÞ 2 1

� �21
� �21

; for N-type dopant

8>>>>>>>>>>><
>>>>>>>>>>>:

ð59Þ

t21
TU ¼

BTUv
2

sinh ðxvÞ
þ

vs

dgðz ¼ LÞ

1 2 pðvÞ

1 þ pðvÞ

� �
þ Av4; for P-type dopant

BTUv
2

sinh ðxvÞ
þ

vs

dgðz ¼ LÞ

1 2 pðvÞ

1 þ pðvÞ

� �
þ Av4þ

2vs

pdgðzÞ
1 þ e

p
2ð Þ

2
Gðv; zÞ 2 1

� �21
� �21

; for N-type dopant

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð60Þ
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t21
L ¼

BLv
2T 3 þ

vs

dgðz ¼ LÞ

1 2 pðvÞ

1 þ pðvÞ

� �
þ Av4; for P-type dopant

BLv
2T 3 þ

vs

dgðz ¼ LÞ

1 2 pðvÞ

1 þ pðvÞ

� �
þ Av4þ

2vs

pdgðzÞ
1 þ e

p
2ð Þ

2
Gðv; zÞ 2 1

� �21
� �21

; for N-type dopant

8>>>>>>>>><
>>>>>>>>>:

ð61Þ

with

1

vs
¼

1

3

2

vTO
þ

1

vL

� �
; pðvÞ ¼ e2p

2hv
vs

� �2

; Gðv; zÞ ¼ ssðvÞNGBðzÞ;

ssðvÞ ¼
V 2

ov
4

4pv4
; NGBðzÞ ¼

n

Bv
¼

2ndgðzÞ

p
; A ¼

nV 2
o

4pv3
s

DM

M

� �2

;

V o ¼
a3

8

where the first terms in equations (59)-(61) are associated with U- and
N-processes with constants BT with units K24, BTU with units s, BL with units
s K23, and v is the phonon angular frequency. The second terms are associated
with the boundary scattering with constants vs which is the average phonon
velocity, vTO the velocity of the low-frequency transverse phonons, vL the
velocity of the longitudinal phonons, dg(z) the sample characteristic grain
dimension in the thickness z and it is estimated from the average distance
between the intersections of grain boundaries with a straight line drawn on a
top-view electron micrograph of the film layer (Graebner et al., 1994), h the
root-mean-squared surface roughness, and the interpretation of p(v) is the
probability of transmission of a phonon through a grain boundary. Note that
scattering is diffusive for v @ vs=2h and specular for v ! vs=2h (Graebner
et al., 1994). The third terms are associated with the scattering due to defects or
impurities with constant A which is related to the number of impurities in the
sample, n is the dopant concentration, Vo the atomic volume defined as the
atomic weight divided by the density (note that this form of the atomic volume
is valid for diamond crystal structures), M is the host atom’s atomic mass, and
DM is the difference between the host and impurity atomic masses. It is worth
noting that there appears to exist different definitions for Vo. While the original
work by Klemens (1955) defines Vo as the atomic volume, other researchers
such as McConnell et al. (2001) define it to be the crystal lattice volume of the host
atom which suggests the form of V o ¼ ð4pR 3Þ=3 where R is the radius of the
host atom or V o ¼ a3: However, note that although A is defined above, it is still
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a fitting parameter since the number of defects in a layer are dependent on the
growth parameters of the film and are not easily obtained from an experiment.
Hence, it appears that the actual definition of Vo is unimportant. Impurities in
dielectric samples can be of the P-type (e.g. boron) or of the N-type
(e.g. phosphorus). Considering that phonon defect scattering is strongly
influenced by the grain structure of the material and because only the N-type
dopants tend to segregate at the grain boundaries, in addition to the grain
boundary scattering the fraction of N-type dopants that are segregated to the
grain boundaries are modeled as the fourth term (Goodson, 1996) with constant
thickness z, G the dimensionless grain-boundary scattering strength (Goodson
et al., 1995), NGB is the number density of imperfections per unit grain
boundary area, ss is the scattering cross-sections of the imperfections, n is the
dopant concentration, Bv is the grain boundary area per unit volume which is
provided for columnar grain (McConnell et al., 2001).

Holland’s model has been extensively, and in good agreement, used to
characterize experimental results of single- and polycrystalline silicon thin
films by Professor Goodson’s group at Stanford University (Asheghi et al.,
1998; Goodson, 1996; McConnell et al., 2001). Results of the
temperature-dependent thermal conductivity for several Si thin films using
the Holland’s model are presented later in this paper.

In synthetic diamond films, natural type-IIa, type-Ia diamond and Ge
crystals, the N-process scattering rates are largely unknown and the Debye
model, which ignores the N-processes, under predicts the strength to which
phonons are scattered (Asen-Palmer et al., 1997; Olson et al., 1993). Therefore, a
better model to be used is a modified Callaway/Holland model (Asen-Palmer
et al., 1997), which includes all phonon polarizations and assumes that the
N-processes dominate the scattering and the total thermal conductivity can be
expressed as a sum of K1 and K2

K1 ¼ HT 3
X3

i¼1

v21
i

Z ui=T

0

J 4ðxÞt
i
c dx ð62Þ

K2 ¼ HT 3
X3

i¼1

v21
i

Z ui=T

0

J 4ðxÞt
i
c ðtNÞ

21 dx

 !2

Z ui=T

0

J 4ðxÞt i
c ðtNt

i
RÞ

21 dx

ð63Þ

with

H ¼
k4

B

6p2"3
; ui ¼

6p2

V o

� �1=3
"vi
kB

;
1

tc
¼

1

tN
þ

1

t i
R

� �
where i is associated with the three phonon polarizations, t21

c is the combined
relaxation rate of the normal (N) and all resistive (R) scattering rates, and Vo is
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the atomic volume. Note that K1 is the Debye model and K2 is the addition of
the thermal resistivity when N-processes are assumed to dominate the
scattering (Berman, 1992).

The resistive scatterings are given by (Graebner et al., 1994)

t21
R;i ¼ Au;ix

2
vT

3 e
2Bu
T þ

vs

dgðz ¼ LÞ

1 2 pðvÞ

1 þ pðvÞ

� �
þ Av4 þ

S

2p
v

þ

pceF
6

4v3
s

v4; for v ,
vs

F

pceF
2vs

4
; for v .

vs

F

8>>>><
>>>>:

ð64Þ

with

Au;i ¼
Bk2

B

4p2vi"2
; x ¼

"v

kBT
;

1

vs
¼

1

3

2

vTO
þ

1

vL

� �
; A ¼

nV o

4pv3
s

DM

M

� �2

;

V o ¼
a3

8

where the first term in equation (64) is associated with the U-processes with
constants Au,i with units s21 K23, x is the dimensionless phonon angular
frequency, T the temperature, Bu with units K, B with units mK21, vi are the
phonon velocities corresponding to the low-frequency, high-frequency and
longitudinal phonon modes, " is Planck’s constant divided by 2p ð1:05459 £
10234 J sÞ; kB is the Boltzmann constant ð1:3807 £ 10223 J=KÞ: The second term
is the grain boundary scattering as described earlier. The third term is
associated with the scatterings due to defects or impurities. It is important to
mention that the definition of A is slightly different from that of Si cases and
seems to be more appropriate for use with single-crystal diamond films
(Graebner et al., 1994). The fourth term is associated with scattering from strain
fields with constant S based on the density of dislocations per unit area. The
fifth term is associated with extended defect scattering with constants ce as the
concentration of dopant atoms in m23 and F the diameter of the dopant atom.
The scattering due to the N-processes is given by (Graebner et al., 1994)

t21
N ¼ AnxvT

4 ð65Þ

where An ¼ CkB=2p"; C is a constant with units of K23

Unphysical scattering accountability. At high temperatures it is possible that
some of the resistive scattering mechanisms described earlier lead to
non-physical small mean free paths. To eliminate such problem, one can
require that (Graebner et al., 1994)
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t21
R ¼

lmin

vs
þ

i

X
t i

R

� �21

0
@

1
A

21

ð66Þ

where lmin is a minimum mean free path and t i
R represents the sum of all the

above resistive scattering mechanisms. lmin has been modeled as either the
interatomic dimension or half of the wavelength (Graebner et al., 1994).

In addition to the above scattering rates, contributions due to microcracks
are introduced by multiplying a temperature-independent constant M c # 1:0
to the combined form of equations (62) and (63) (Graebner et al., 1994). This
seems to characterize accurately several experimental findings and provide
information about the total resistance to the heat flow.

Based on known theory of scattering mechanisms, these methods are
being used by Professor Majumdar’s group at Berkeley (Majumdar, 1993),
Graebner and colleagues at AT&T Bell Laboratories (Graebner et al., 1994),
Professor Goodson’s group at Stanford (Asheghi et al., 1998; Goodson, 1996;
Goodson et al., 1995; McConnell et al., 2001) and Professor Chen’s group
presently at MIT (Chen, 1997, 1998, 2000) for extracting the total mean free
paths l.

Note that Holland’s and the modified Callaway/Holland’s models are a
solution of the steady-state version of the BTE and can only provide the
temperature-dependent results of thermal conductivity and therefore only
addresses the issue of microscopic size, i.e. it can only determine thermal
conductivity as a function of size. The EPRT appears to be valid in providing
the bridging for microscopic time issues (Joshi and Majumdar, 1993) but yields
results that are different from that provided by the Cattaneo model. This
discrepancy has not been explained to date because of the lack of experimental
data for small time scales.

The theory described above is further tested in the “Results and discussion”
section based on experimental data obtained for single-crystal silicon films
(Asheghi et al., 1998), polycrystalline silicon films (McConnell et al., 2001), and
synthetic diamond films (Graebner et al., 1994).

Table IV gives information on the various constants described throughout
this section for a few selected materials.

MD
MD is a computer simulation technique where the time evolution of a set of
interacting atoms is tracked by integrating their classical equations of motion.
This equation corresponds to the second law of classical mechanics formulated
by Sir Isaac Newton in 1687

~Fi ¼ mi~ai ð67Þ
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where ~F is the force acting on the atom i at a given time in a system containing
N atoms, mi is the atom mass, and ~ai is the atom acceleration given by

~ai ¼
d2~ri
dt 2

with ~ri as the atom position.
The force is obtained from the gradient of the interatomic potential energy

surface U(r1,r2, . . ., rN) as a function of the positions of all the atoms:

~Fi ¼ 2~7riU ð~r1; ~r2; . . .; ~rN Þ ð68Þ

where ~7ri operates on the position ri of atom i. Any change in the potential
energy that results from a displacement of atom i contributes to the force acting
on atom i.

After the initial conditions and the interaction potential are defined, the
equations of motion are numerically solved (Ercolessi, 1997). The molecular
dynamics simulation provides information at the microscopic level via
positions and velocities of all atoms as a function of time,

Constant Si Ge C

vTO (m/s) 5.86£ 103a 3.55£103a –
vTU (m/s) 2.0£ 103a 1.3£103a –
vL (m/s) 4.24£ 103a 2.46£103a –
uTO (K) 180a 101a –
uTU (K) 210a 118a –
uL (K) 570a 333a –
vs (m/s) 5.2£103 3.1£103 13,500b or 12,288c

a (Å) 5.43 5.658 3.567
Au (s21 K23) – – 640b

An (s21 K24) – – 1.499
Bu (K) – – 470b or 670d

B (cm/K) – – 1.5£ 10212d

C (K23) – – 7.2 £ 10211d

BT (K24) 9.3 £ 10213a 1 £ 10211a –
BTU (s) 5.5£10218a 5.0 £ 10218a –
BL (s/K3) 2.0£10224a 6.9 £ 10224a –
A (s3) O(10243)-O(10246) O(10244) O(10230)
h (Å) 1-10 – 100
Vo (m3) 2.0£10229 2.3 £ 10229 5.67 £ 10230

dg (nm) 0.1-3000 1,000-10,000
S – – 43£1025d

F (nm) – – 1.5d

ce (m23) – – 19 £ 1022d

Mc – – 0.95d

Notes: aHolland (1963), bGoodson et al. (1995), cMajumdar (1993), and dGraebner et al. (1994).

Table IV.
Data used by different
researchers in the
prediction of
the relaxation time of
silicon, germanium and
diamond
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~riðtÞ; ~viðtÞ:

However, the important information that can be obtained from the
simulations are the macroscopic properties of the system. This sequence of
points that are generated belong to the same ensemble. These describe the
state of a system. An ensemble can be defined as a collection of all possible
systems which have different microscopic states but have an identical
macroscopic or thermodynamic state (Stote et al., 1999). These ensembles can
be described by thermodynamic states that are kept constant such as the
number of atoms (N), volume (V), energy (E), temperature (T), pressure (P)
and chemical potential (m):

. microcanonical ensemble (NVE);

. canonical ensemble (NVT);

. isobaric-isothermal ensemble (NPT); and

. grand canonical ensemble (mVT).

MD can be viewed either as a deterministic or statistical mechanics technique.
As a deterministic technique it is given an initial set of positions and velocities
and the subsequent time evolutions are completely determined (Ercolessi,
1997). As a statistical mechanics technique, it generates a set of configurations
that are distributed according to statistical distribution functions. In cases
where thermodynamic parameters are of interest, the MD information can be
averaged over all the atoms in the system and over the time of the simulation.
In order to achieve these different ensembles the following thermostats can be
used (Brenner, 1997).

. Velocity scaling – the wanted temperature is achieved by multiplying
each atomic velocity by a scaling factor.

. Langevin – a heat bath is modeled by adding random and frictional
forces to the velocity of each particle. The wanted temperature is reached
by balancing these two forces.

. Berendsen – the difference between the desired and the current
temperature of the system can generate a friction coefficient that heats
(if negative) or cools (if positive) each atom in the system.

. Hoover – the system is kept at a constant temperature by adding terms to
the interatomic forces which maintain a constant kinetic energy.

. Nose – which adds terms to the forces similar to Hoover, however the
terms allow fluctuations in temperature that mimic those that would
occur if the simulated systems were part of a macroscopic system.

MD is a computer simulation that often can be considered to be just as good as
the experiment (Rapaport, 1995). Therefore, MD is viewed as an important tool
for solving the thermal conductivity of very thin films.
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The following subsections describe several important issues in acquiring
thermodynamic information in the process of running a MD simulation.

Building initial configurations. The different physical properties of solids
are closely related to their crystal structures. There are 14 Bravais lattices,
and most of the elements found in the periodic table can be depicted by the
hexagonal close-packed structure and the three major cubic configurations:
simple cubic (sc); body-centered cubic (bcc), and face-centered cubic (fcc).

The Bravais lattice defines a crystalline solid by specifying the periodic
array in which the repeated units of a crystal are arranged. These Bravais
lattices are defined by three primitive vectors as shown in Figure 5(a). The real
crystal structure is composed of the copies of the same physical unit (such as
the NaCl shown in Figure 5(b), called basis, which are located at the points of a
Bravais lattice. Table V provides some information on the different lattices
with basis.

SC BCC FCC Diamond

Unit cell volume a 3 a 3 a 3 a 3

Lattice points per cell 1 2 4 8
0 0 0 0

a=2 ðx̂þ ŷþ ẑÞ a=2 ðx̂þ ŷÞ a=2 ðx̂þ ŷÞ
a=2 ðŷþ ẑÞ a=2 ðŷþ ẑÞ

Location of basis a=2 ðx̂þ ẑÞ a=2 ðx̂þ ẑÞ
a=4 ðx̂þ ŷþ ẑÞ
a=4 ð3x̂þ 3ŷþ ẑÞ
a=4 ðx̂þ 3ŷþ 3ẑÞ
a=4 ð3x̂þ ŷþ 3ẑÞ

Table V.
Basis information

Figure 5.
Representation of
primitive unit vectors
and basis of a Bravais
lattice
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Figure 6 presents the unit cell of a diamond and zincblende structure for
illustration. The lattice sites shown correspond to carbon atoms covalently
bonded to four nearest neighbors. This structure is obtained from
superimposing two fcc Bravais lattices displaced from each other by
one-quarter of a unit cell. Figure 7 is a computer generated diamond crystal
structure. Two other elements in the periodic table form the diamond structure:
silicon and germanium. When instead of carbon atoms, the lattice sites are
replaced by zinc and sulfur atoms, or gallium and arsenide, GaAs
(semiconducting compounds from the Groups III and IV), the diamond
structure is called a zincblende structure (Hook and Hall, 1991).

Carbon nanotubes (CNTs) were discovered in the early 1990s (Iijima, 1991;
Iijima and Ichihashi, 1993; Thess et al., 1996) and possess unique thermal,

Figure 6.
The diamond and

zincblende structure.
The diamond structure is

formed from carbon
atoms occupying all

lattice spaces and the
zincblende is formed
from zinc and sulfur
atoms occupying the

lattice spaces

Figure 7.
Representation of a
diamond structure

constructed 3 £ 3 £ 5
cells along the x-, y-, and

z-directions
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mechanical and electronic properties. Two classes of CNTs were observed.
Single-wall carbon nanotubes (SWNTs) are composed of hexagonal lattices
similar to a single sheet of graphite, which is rolled-up to form a tube with
typical diameters of 1-20 nm. Multi-wall carbon nanotubes (MWNTs) are two or
more SWNTs concentrically arranged like the ripples formed in water.

SWNTs or MWNTs are of different types based on a pair of integers (n, m),
which denotes the chirality of the tube: armchair ðn ¼ mÞ; zigzag (n ¼ 0 or
m ¼ 0), and chiral (or helical for any other combination of n and m) (Figure 8).
All armchair tubes are metallic, the conduction bands are shown to cross the
Fermi level (Wildöer et al., 1998). Zigzag and chiral tubes are observed to
behave in two ways: if n2m ¼ 3k (and k is an integer), these tubes are metallic
and if n2m – 3k; the tubes are semiconducting with a small (,0.5 eV) band
gap which is inversely dependent on the tube diameter (Wildöer et al., 1998).

The reader is referred to Saito et al. (1992) and Wildöer et al. (1998) for more
in-depth examination of the construction of nanotubes. Figure 9 provides an
example of a (10, 10) nanotube.

Boundary conditions. The MD computational cell, used to study real
systems, contains several hundreds to a few thousand atoms. This system is
much smaller than the real system and in order to certify that the size limitation
of the computational cell does not introduce errors to the simulation results, the
boundary conditions must be chosen carefully.

. Free boundaries. This is a case where no boundaries are assigned to the
system. The molecules are free to move within the system. This works
well for cases where particles are in a vacuum. It is appropriate for
ultrafast processes when the effect of the boundaries are unimportant due
to the short time scales of the involved process.

Figure 8.
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. Rigid boundaries. This is a case where the atoms at the boundaries are
fixed. This is an unphysical situation, which is introduced to study
boundary effects.

. Periodic boundaries. This is the most popular choice of boundary
conditions and is used mainly to eliminate the surfaces. Periodic
boundary conditions are in essence similar to the explanation of Bravais
lattices where a copy of a computational cell is replicated in space
infinitely (Figure 10).

. Mixed boundaries. This is any combination of the above boundary
conditions where the system can be set to be periodic in one or two
directions and free or rigid in the other directions.

Interatomic potentials. The model for the physical system comes from choosing
the potential. This is a function of the positions of the nuclei, representing the
potential energy of the system when the atoms are arranged at specific
positions. The well-established and understood pair potential such as the
Lennard-Jones (6-12) potential is not useful for elements that form diamond-like
structures such as Si, C, and Ge. This is true for all semiconductors and other
covalently-bonded systems. The Stillinger-Weber Potential (SWP) (Stillinger
and Weber, 1985) is one of the first potentials introduced for modeling a

Figure 9.
Section of a (10, 10)

nanotube with 60 atoms
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semiconductor using a classical model. The main advantage in using the SWP
is its simplicity. However, it has a built-in diamond-like tetrahedral structure,
which hinders transferability (Ercolessi, 1997). Tersoff (1988a, b) proposed a
family of many-body potential functions, which are based on the bond order
concept that depends on the local environment (i.e. its nearest neighbors). This
eliminates the transferability problem by allowing a potential that can study
silicon, germanium, carbon and a combination of these atoms (Maruyama,
2000). The Tersoff-Brenner potential (Brenner, 1990) is a modified version of
Tersoff’s potential to include the hydrocarbon system, which is widely used
with CNTs. The reader is referred to Chapter 6 in Maruyama (2000) for a
unified representation of the Tersoff and Brenner’s potentials. For simplicity,
only the Stillinger and Webber potential is described here.

The Stillinger-Weber potential (Stillinger and Weber, 1985). The many-body
total potential energy of the system of N atoms interacting is:

U ð~r1; ~r2; . . .; ~rNÞ ¼
i

X
j.i

X
U ð2Þ

i;j þ
i

X
j.i

X
k.j

X
U ð3Þ

i;j;k ð69Þ

where ~r are the positions of the atoms, U ð2Þ
i; j is the two-body term and U ð3Þ

i;j;k is the

three-body term contribution to the total potential U. The two-body term is

U ð2Þ
i;j ¼ 1A B

rij
s

� �2p

21

� �
e

1
rij=s2a

� �
ð70Þ

and the three-body term is

Figure 10.
Replica of computational
cell used for periodic
boundary conditions
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U ð3Þ
i;j;k ¼ 1le

g

rij=s2a
þ

g

rik=s2a

� �
cos ðuijkÞ þ

1

3

� �2

ð71Þ

where rij ¼ j~ri 2 ~rjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi 2 xjÞ

2 þ ðyi 2 yjÞ
2 þ ðzi 2 zjÞ

2
q

; the cut-off of this

potential is determined by rc ¼ sa, uijk is the angle centered on atom i and is
given by cos uijk ¼ ~rj · ~rk=ðrjrkÞ; and 1, l, s, g, A, B, p, and a are parameters of
the Si crystal structure provided in Table VI.

Integration algorithms of the equation of motion (EOM). The basic idea for
all time integration algorithms of the EOM is to advance the system variables
through a discrete step in time by approximating the action of the derivative
via finite differences. In MD, typical Runge-Kutta schemes are not used because
they are time-consuming. It would be necessary to solve four force evaluations
per atom per step (Haile, 1992). The common criteria for the different time
integrators are that it should:

. minimize the need for the force calculation;

. be stable;

. be accurate;

. adhere to conservation of momentum and energy for the whole system;
and

. possibly be time-reversible.

The most popular integration algorithms used for MD simulations are the:

(1) Verlet;

(2) leap-frog;

(3) velocity Verlet; and

(4) predictor-corrector
. Nordsieck
. gear.

The most commonly used time integration algorithm (Ercolessi, 1997) is the
Verlet algorithm and it is further described below.

Verlet algorithm The simplest finite-difference method used in MD is a
third-order Sẗrner algorithm first used by Verlet. This method uses the
combination of two Taylor expansions. First we define the Taylor series for
position from t to t þ dt

1 (eV) g s (Å) a l A B p

2.16826 1.20 2.0951 1.8 21 7.049556277 0.6022245584 4

Source: Stillinger and Weber, (1985)

Table VI.
Parameters used for

silicon in the SWP
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xðt þ dtÞ ¼ xðtÞ þ
dxðtÞ

dt
dt þ

1

2

dx2ðtÞ

dt 2
dt 2 þ

1

3

dx3ðtÞ

dt 3
dt 3 þ Oðdt 4Þ ð72Þ

and t to t2dt

xðt 2 dtÞ ¼ xðtÞ2
dxðtÞ

dt
dt þ

1

2

dx2ðtÞ

dt 2
dt 2 2

1

3

dx3ðtÞ

dt 3
dt 3 þ Oðdt 4Þ ð73Þ

By adding equations (72) and (73)

xðt þ dtÞ ¼ 2xðtÞ2 xðt 2 dtÞ þ
dx2ðtÞ

dt 2
dt 2 þ Oðdt 4Þ ð74Þ

Generally,

rðt þ dtÞ ¼ 2rðtÞ2 rðt 2 dtÞ þ aðtÞdt 2 þ Oðdt 4Þ ð75Þ

where a(t) is the force divided by the mass. The Verlet algorithm uses the
positions and accelerations at time t and the positions from time t 2 dt to
calculate the new positions at time t+dt. Its advantages are that it is fairly
straightforward and the storage requirements are small. The disadvantages are
that the velocities are not directly generated and it is of moderate precision.

Physical properties. The following discusses the most common physical
properties that are obtained from the MD simulation.

Potential energy. The total many-body potential is given by (Evans and
Morriss, 1990)

U ð~r1; ~r2; . . .; ~rN; tÞ ¼
X

Ui þ
1

2!

X
U
ð2Þ

i; j
þ

1

3!

X
U
ð3Þ

i; j;k
þ . . . ð76Þ

where the total potential energy is resolved by the interactions of N identical
particles into one-body Ui, two-body U ð2Þ

i;j ; three-body U ð3Þ
i; j; k; etc. contributions.

Kinetic energy. The average kinetic energy is given by

KEðtÞ ¼
1

2

XN
i

miðviðtÞÞ
2 ð77Þ

where N is the total number of atoms, and mivi denotes the molecular moment
via the atom’s masses (m) and velocities (v).

Total energy. The total energy of the system is given by

E ¼ U þ KE ð78Þ

which is the sum of the potential (U) and kinetic (KE) energies. Note that
although both potential and kinetic energies are subject to fluctuations, the
total energy must be preserved (Haile, 1992).
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Temperature. The instantaneous temperature is given by the kinetic
temperature

KEðtÞ ¼
3

2
NkBT ð79Þ

where kB is the Boltzmann constant.
Thermal conductivity: direct method. The direct method is a

nonequilibrium molecular dynamics (NEMD) computer simulation that is
analogous to an experimental situation in which a temperature gradient
across the simulation cell is applied. To simulate heat flow from a hot to cold
region, the specimen is divided into M equal segments perpendicular to the z
direction. For periodic boundary conditions the slabs are created as shown in
Figure 11(a) and for rigid boundary conditions the slabs are created as
shown in Figure 11(b).

The instantaneous temperature Ti in a slab i is determined from the kinetic
energies of the Ni atoms within that slab

Ti ¼
1

3NikB

XNi

k

mkv
2
k ð80Þ

Figure 11.
Slabs in MD
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where the masses mk and velocities vk are of atoms k in the slab i and kB is the
Boltzmann constant. The temperature profile is then calculated by time
averaging (Muller-Plathe, 1997).

The temperature and its gradient are averages calculated over time as well
as over many particles, so they are better defined and should converge rapidly
(Muller-Plathe, 1997). The atoms in the boundary slab interact with the atoms
in the rest of the specimen and at equilibrium a thermal flux is maintained via
energy exchange between the hot and cold regions. The heat flux in a given
direction in a thermally equilibrated slab is calculated according to

q ¼

1
2

PNB

k¼1

mk v
02
k 2 v2

k

� �� 	
ADt

ð81Þ

where A is the cross-sectional area, Dt is the time step taken to be 0.5 fs, and NB

is the number of atoms in the boundary layer. vk and v0k are the velocities of the
atoms in the hot and cold slabs before and after scaling, respectively (Osman
and Srivastava, 2001).

Figure 11(a) depicts the configuration of the system for periodic boundary
conditions and can be extended for crystal structures in three dimensions or for
nanotubes in an uniaxial dimension. The first slab on the left is set to a cold
temperature and the hot temperature is set to a slab in the middle of the
specimen ðN=2 þ 1Þ: This is to allow the usage of periodic boundary conditions
as described by Muller-Plathe (1997). For crystal structures, bulk properties are
studied by setting all three directions to be periodic, while the nanotube will
only have periodic conditions set perpendicular to the tube axis. Note that this
periodic arrangement will double the area available for the heat to flow (energy
can flow in two directions from the hot slab).

In Figure 11(b), the first and last slabs consist of rigid atoms which duplicate
the case of actual boundaries allowing for boundary scattering by the particles
within the system. The cold and hot slabs are set to the slabs immediately
adjacent to the rigid atoms. The heat flux is calculated similar to equation (81).
In the study of thin films, the structure shown in Figure 11(b) is slightly
modified to include all three directions; while the z-direction is kept to include
the rigid atoms, the x- and y-directions are set to be periodic (Lukes et al., 2000;
Schelling et al., 2002).

Finally, the thermal conductivity is calculated based on Fourier law

K ¼ 2
q

dT
dz

D E ð82Þ

where dT/dz is the gradient of the temperature T which is the only unknown
obtained as an ensemble average (note that in the case of periodic boundary
conditions, we obtain two temperature profiles while with the rigid boundary
conditions only one profile is obtained).
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The heat current flows in a well-defined direction in the lattice, the
simulation will only provide K in one crystal lattice direction. To obtain K in
the other lattice directions, an entirely new simulation must be performed. Note
that this is inherent of the direct method only. When an equilibrium molecular
dynamics (EMD) simulation is performed such as the Green-Kubo method
(Che et al., 2000; Schelling et al., 2002; Volz and Chen, 1999), the entire thermal
conductivity tensor is computed in just one simulation (Schelling et al., 2002).
However, note that the direct method simulates an experiment directly, so it is a
much simpler method to compute the thermal conductivity and the Green-Kubo
method also presents other limitations that are eliminated in the direct method
(Schelling et al., 2002).

Results and discussion
Results based on the Holland model
Figure 12 shows the temperature-dependent data for several experiments
conducted on several film thicknesses of doped and undoped single- and
polycrystalline silicon films. These data are used for comparison with the
theories developed earlier. Note that the theories developed earlier have
been used to explain partially these experimental results in the work by

Figure 12.
Experimental thermal
conductivity data for
several silicon films

according to temperature

An overview of
advances

47



McConnell et al. (2001). However, the results shown here differ ever so slightly
form those reported earlier, and we attempt to provide some insight into the
different parameters that were used to fit these data.

The results presented in Figure 13 are based on the experimental data and
the theoretical fit in the work provided by Holland (1963). The best fit
approximation for bulk single-crystal silicon and germanium samples were
obtained in this study by using equation (55) with the defect scattering
parameters ASi ¼ 1.32 £ 102 45 s3 and AGe ¼ 2.4 £ 102 44 s3, respectively.
However, the reported defect scattering parameter for silicon provided by
Holland (1963) is one order of magnitude greater than that found in this study,
ASi¼ 1.32 £ 10244 s3. This suggests that the reported value by Holland could
be in error considering that the same theory is used and the parameter for Ge
matches the parameter in Holland’s work.

As in the work by McConnell et al. (2001), the results presented in
Figures 14(a)-16(b) are based on Holland’s method (equation (55)) and assume
that the scattering mechanisms present for both doped and undoped samples
are U- and N-processes, grain boundaries, and defects. The fitting parameters
for all cases are the defect scattering parameter A, the rms grain boundary
surface roughness h, and the maximum grain size dgðz ¼ LÞ: These parameters
are contrasted and summarized in Table VII.

The chosen parameters that provide the best fit to the undoped data in
Figure 14(a) are the defect scattering parameter A¼ 1.32 £ 10245 s3, the rms

Figure 13.
The best fit of
temperature-dependent
thermal conductivity for
the experimental thermal
conductivity data of
silicon and germanium
samples following theory
presented by Holland
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Figure 14.
Comparison of thermal

conductivity of
single-crystal doped and
undoped silicon films of
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grain boundary surface roughness h ¼ 0:25 nm; and the maximum grain size
dgðz ¼ LÞ ¼ 3mm: It is interesting to point out that the value for the defect
scattering parameter is of the same order of magnitude as the one used to
obtain the best fit of the experimental data of bulk single-crystal provided by
Holland (1963). This indicates that the relative number of defects in the
undoped single-crystal film is comparable to the defects found in the bulk
single-crystal material. The chosen parameters that provide the best fit of the
doped data in Figure 14(a) are the defect scattering parameter A ¼
4:38 £ 10246 s3; the rms grain boundary surface roughness h ¼ 1 nm; and
the maximum grain size dgðz ¼ LÞ ¼ 3mm: The value for the defect scattering
parameter is obtained from the A equation (equation (59)) and is based on the
boron-dopant concentration of n ¼ 1:0 £ 1019 cm23 as provided in the
experiment conducted by Asheghi (McConnell et al., 2001).

The results shown in Figure 14(b) are similar to the results shown in
Figure 14(a) with the exception that the term vs/L is added to equations
(59)-(61). This is suggested by Graebner et al. (1994) for small samples. Note
that although this version of the grain boundary equation recovers the overall
behavior of the temperature-dependent thermal conductivity for temperatures
higher than 70 K, it cannot recover the correct behavior at the lower
temperatures.

From the theory described earlier in contrast to past efforts and
interpretations, the fitting provided in Figure 14(a) suggests that a better

Figure 15.
Comparison of thermal
conductivity of doped
and undoped
polycrystalline silicon
films of thickness
L ¼ 1mm
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Figure 16.
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equation for the grain boundary effect for small doped and undoped
single-crystal samples would be a version similar to that of equations (59)-(61)
where the term dgðz ¼ LÞ be replaced by the film thickness L. In this study, we
adopt a slight change in the definition of dg which must be defined as the
characteristic dimension that is parallel (and not perpendicular) to the flow of
heat. Also, we find that the rms grain boundary surface roughness h has great
impact in controlling the low temperature behavior of the
temperature-dependent thermal conductivity of single-crystal films. This
distinction is clearly depicted in results of Figure 14.

Figure 15 provides theoretical predictions of the temperature-dependent
thermal conductivity using equation (55) and the boron-doped and undoped
(McConnell et al., 2000) experimental data of polysilicon films. Because of the
columnar structure of polycrystalline films, the maximum grain size dgðz ¼ LÞ
in the grain boundary equation is the average size of the grains as computed
from the average value of the micrograph results (and not the film thickness as
proposed by the single-crystal results).

In Figure 15, the parameters that provide the best fit to the data of the
undoped sample are A ¼ 1:32 £ 10243 s3; h ¼ 1 nm and dgðz ¼ LÞ ¼ 110 nm:
The defect scattering parameter is two orders of magnitude greater than that
provided to bulk single-crystal silicon samples. This indicates that the relative
number of defects in the undoped single-crystal film is much greater than the
defects found in the bulk material. For the doped sample the parameters that
provide the best fit of the data are A ¼ 4:38 £ 10246 s3; h ¼ 0:15 nm; and

Sample h(nm) dg n(cm23) A(s3)

McConnell et al. (2000)a usc – 3mm – –
Present work (Figure 14(a)) usc 0.25 3mm – 1.32£10245

McConnell et al. (2000)a Bdsc – 3mm 1£1019 –
Present work (Figure 14(a)) Bdsc 1 3mm – 4.38£10246

McConnell et al. (2000) upc 1 190 nmc, 5 nmb – 1.32£10243

Present work (Figure 15) upc 1 110 nm – 1.32 £ 10243

McConnell et al. (2000) Bdpc – 243 nmc 1.0£1019 6.932£10244

Present work (Figure 15) Bdpc 0.15 250 nm – 4.38 £ 10246

McConnell et al. (2001) Bdpc 0.1 400 nm 2.0 £ 1018 1.9£10244

Present work (Figure 16(a)) Bdpc 0.235 400 nm 25 £ 1019 1.09£10244

McConnell et al. (2001) Bdpc 0.35 408 nm 1.6 £ 1019 1.0£10244

Present work (Figure 16(a)) Bdpc 0.2 200 nm 25 £ 1019 1.09£10244

McConnell et al. (2001) Pdpc 0.1 313 nm 2.4 £ 1019 1.0£10244

Present work (Figure 16(b)) Pdpc 0.095 313 nm 8.0 £ 1019 9.78£10245

McConnell et al. (2001) Pdpc 0.135 295 nm 4.1 £ 1019 1.0£10244

Present work (Figure 16(b)) Pdpc 0.135 295 nm 8.0 £ 1021 9.78£10245

Note: aThese results were not fitted in the work of McConnell et al. (2000); bthe reported value is
for dgðz ¼ 0Þ; cthe reported value is for dgðz ¼ LÞ; usc – undoped single crystal; Bdsc –
boron-doped single crystal; upc – undoped polycrystal; Bdpc – boron-doped polycrystal; Pdpc –
phosphorus-doped polycrystal.

Table VII.
Parameters used in
fitting the Holland
model to available
experimental data
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dgðz ¼ LÞ ¼ 250 nm: The defect scattering parameter is obtained from A and is
based on the dopant concentration of boron, n¼1.0 £ 1019 cm23, as specified in
the experiment conducted by McConnell et al. (2000). Note that the current
fitting parameters are very different from those reported by McConnell et al.
(2000) (Table VI). However, the fitting parameters reported here provide a much
better fit to the data than those provided by the results of McConnell et al. 2000).

The fitting parameters for two boron-doped polycrystalline films in
Figure 16(a) are in very good agreement with those reported by McConnell et al.
(2001). The biggest difference, found in this study, is in the actual value of the
dopant concentration used for providing the fitting parameter
A ¼ 1.09 £ 10244 s3 was of n¼25 £ 1019 cm23.

The fitting parameters for two phosphorus-doped polycrystalline films in
Figure 16(b) are also in very good agreement with those reported by McConnell
et al. (2001). As mentioned earlier, since N-type dopants tend to segregate to the
grain boundaries, in contrast to past efforts by McConnell et al. (2001), the
segregated scattering equation is used in addition to the grain boundary
scattering equation in this study. Since it is difficult to estimate the fraction of
the segregated atoms, this model assumes that 75 percent of the scattering
occurs due to the grain boundaries in the grain boundary scattering equation
and that 25 percent of the scattering occurs due to the segregated grain
boundaries in the segregated equation.

Comparison of results between Holland model and EPRT
Figure 17 provides the theoretical fitting for the temperature-dependent
thermal conductivity experimental data of doped single-crystal silicon films of
thicknesses 0.42,0.83 and 1.6mm. It is interesting to note that Holland’s theory
seems to predict accurately the overall behavior for films with thicknesses
greater than ,1mm. Since the scattering mechanism that has more impact at
lower temperatures is the grain boundary mechanism, it appears that the form
of equation for grain boundary is not very appropriate for use with films
thinner than 1mm. The poor agreement of the fitting parameters with the lower
temperature and smaller samples could be attributed to the fact that instead of
the grain boundaries the layer boundaries will limit the thermal conductivity
(McConnell et al., 2001). However, a closer look at Callaway “type’ models
reveals that these are appropriate for diffusive results. As observed in
Figure 17, it is clear that the room temperature and above room temperature
data can be fitted with Holland’s model. Only at low temperatures, where the
ballistic issues become more predominant, the Holland’s model is not in
agreement with experimental results.

Figure 18(a) shows the experimental and analytical results obtained by
Asheghi et al. (1998) for crystalline silicon layers of thicknesses 0.42, 0.83 and
1.6 mm. In their study, yet another modification to Callaway’s
temperature-dependent thermal conductivity model is employed which
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considers the possibility of specular reflection through the surface. Their
results show the peak in the conductivity for thin films to occur at 70 K. The
recommended bulk conductivity reaches a maximum of 5,500 W/m/K at 30 K
(Asheghi et al., 1998).

The EPRT is one of the first models to provide accurate results when the
conduction mechanism shifts from a purely diffusive to a purely ballistic mode.
Therefore, Figure 18(b) shows the results from the finite-element
implementation of the steady-state EPRT compared to the experimental and
analytical results given by Asheghi et al. (1998). Although the results in
Figure 18(b) present values that are higher than those seen in results of
Asheghi and colleagues, it provides a better fit of the data at low temperatures.
The current study of the EPRT did not include effects of grain boundary
scattering. This demonstrates that the addition of the grain boundary
scattering reduces the thermal conductivity by adding more sites for the
thermal resistance. The results obtained by the EPRT method seem to be more
appropriate to be used with films of the 1mm range. Note that at room
temperature, the mean free path of silicon and diamond films are 0.0409 and
0.39mm, respectively. Hence, films thinner than 1mm will present microscopic
ballistic behavior at room temperature.

The results shown by using the FEM are based on experimental
thermal conductivity data available from work by Anthony et al. (1990)
(Table VIII).

Figure 17.
Comparison of thermal
conductivity of doped
single-crystalline silicon
films of thicknesses
L ¼ 0.42, 0.83 and
1.6mm
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After the heat flux results for several film thicknesses spanning both ballistic
and diffusive limits were obtained, the effective thermal conductivity data for
single thin films such as diamond and silicon are shown in Figure 19. Both plots
are obtained by using equation (51) and results of heat flux provided by the FEM.

Figure 18.
Asheghi et al.’s work

compared to the results
using the FEM to solve

the EPRT in determining
temperature-dependent

thermal conductivity for
thin silicon films

Parameter Diamond Silicon

v (m/s) 12,288 13,500 6,500
l (mm) 0.39 0.447 0.044
A 163.94 163.94 101.4
s (W/m2/K4) 51.4995 42.415 24.8
uD (K) 1,860 1,860 625

Table VIII.
Parameters used in

solving the EPRT for
diamond and silicon

films
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Thermal conductivity results for diamond films asymptotically approach the
bulk thermal conductivity data provided in the experiment by Anthony et al.
(1990) where the thermal conductivity of type IIA diamond films with impurity
density of hi¼0.154 £ 1026 m23 is 3,320 W/m/K. Figure 19(a) also provides
thermal conductivity data at two different phonon velocities (v ¼ 13,500 and
12,288 m/s). This change in velocity causes changes in the mean free path. It is
observed that the thermal conductivity is reduced when the mean free path is
reduced. This illustrates the effects of introducing more scattering mechanisms
into the thin film.

Figure 19(b) provides thermal conductivity results for different silicon film
thicknesses and asymptotically approaches the bulk thermal conductivity of
158 W/m/K.

Results based on the modified Callaway/Holland model
Figure 20 shows results obtained by using the modified Callaway/Holland’s
model for a diamond thin film. The fitting parameters in Figure 20 are

Figure 19.
Effective thermal
conductivity data for
single dielectric thin
films by using FEM
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A ¼ 1:3 £ 10230 s3; h ¼ 10 nm; dgðz ¼ LÞ ¼ 10mm for the thin film and
dgðz ¼ LÞ ¼ 1; 000mm for the bulk film, ce ¼ 19 £ 1022 m3; F ¼ 1:5 nm;
S ¼ 43 £ 1025, An ¼ 7:2 £ 10211K23, C ¼ 670 K, Bu ¼ 1:5 £ 10214 m/K, and
M c ¼ 0:94. These results reproduce these provided by Graebner et al. (1994).
Note that the different curves provide information on the addition of
the different scattering mechanisms: (u) umklapp, (Lb) boundary for bulk films,
(b) grain-boundary for thin films, (p) point defect, (s) strain, (e) extended defect,
and (m) for microcracks.

Results based on MD
A lot of effort is being put forth on both experimental and theoretical retrieval
of thermal conductivity of nanotubes. CNTs are proposed to be an alternative
to the conventional silicon-based-microelectronics for circuits of ,10 nm
(Kreupl et al., 2002). Amazingly, the thermal conductivity of nanotubes is twice
that of diamond films and 15 times greater than that of copper. While normal
metals can carry ,106 A/cm2, SWNTs can carry up to 109 A/cm2, thus
presenting itself as an excellent material for field effect transistors (FETs)
(Baughman et al., 2002).

Figure 20.
Comparison of

temperature-dependent
thermal conductivity
data and predictions

following the theory in
section for a diamond

film of thickness
L ¼ 707mm
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Figure 21 provides experimental results of thermal conductivity of MWNTs
with the room temperature value over 3,000 W/mK. Although there are three
types of CNTs, thermal conductivity is determined by phonons at all
temperatures (Hone et al., 1999). Owing to geometrical differences between
experimental set-ups of nanotube samples, there appears to exist some
disagreement between reported thermal conductivity data. The reported
experimental room temperature thermal conductivity for bulk bundles is
36 W/mK with deduced values for one SWNT ranging from 1,800 to
6,000 W/mK (Hone et al., 1999). SWNTs usually come together to form bundles
in a hexagonally arranged manner to form a crystal-like structure (Thess et al.,
1996). The theoretical expectation for SWNTs is of 6,000 W/mK (Berber et al.,
2000). A source of explanation for such discrepancy is that obtaining absolute
values of thermal conductivity from bundle samples is too uncertain due to the
tube-tube junction, which might be a source of barrier to the thermal
conductivity transport (Kim et al., 2002).

The illustrative results presented here are for an armchair SWNT based on
the Tersoff-Brenner potential (Brenner, 1990) and solve the equation of motion
using a predictor-corrector algorithm with fixed time steps of 0.5 fs. The (10, 10)

SWNT used has 1,600 atoms (this corresponds to a nanotube with 98.4 Å), and
the cross-sectional area is taken to be a ring of 3.4 Å.

In running the NEMD based on the direct method, it is important to
achieve a steady-state current flow and very long simulation times are
required. It was found that to achieve a smooth temperature profile for a thin
film Si grain boundary system, the simulation time should be in the order of 1 ns

Figure 21.
Temperature-dependent
thermal conductivity of
MWNTs with diameter
d ¼ 14 nm and length
l ¼ 2.5mm
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(Schelling et al., 2002). Although this would correspond to 2£ 106 MD steps for
the 0.5 fs time steps used in the simulation analysis, only 5£ 104 steps were
used in the illustrative results presented here.

The results shown in Figure 22 are the running average temperatures in the
thin slices over 5 £ 104 MD steps.Owing to sharp deviations from the linear
gradient at the edges, the gradient of the temperature is obtained from the slabs
in the middle of the simulation. The running averages between 5 £ 104 and
1 £ 105 are compared to determine whether the simulation has reached
equilibrium.

As found in results conducted to thin films, the expected trend in the
temperature-dependent thermal conductivity for CNTs is that at lower
temperatures, the thermal conductivity is low, as the temperature increases it
reaches a maximum, and then it starts to decrease at higher temperatures. The
peak of the thermal conductivity was found to be dependent on the diameter of
the SWNT. This overall trend is found for SWNTs in the work conducted by
Osman and Srivastava (2001). It is worth noting that the nanotubes studied in
Osman and Srivastava (2001) range from 151 to 221 Å with imposed periodic
boundary conditions, while the nanotube studied here is 98.4 Å with rigid
boundary conditions. Osman and Srivastava found that the thermal
conductivity is highly dependent on the tube diameter but is independent of
the tube chirality. The room temperature thermal conductivity for the (10,10)
tube with length 98.4 Å is found to be 1,040 W/mK after 5£104 MD steps which

Figure 22.
Typical temperature

profile obtained from MD
simulations with running

average over 5 £ 104

time steps
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is smaller than that reported (,1,600 W/mK) by Osman and Srivastava (2001).
This difference is consistant with size effects.

Concluding remarks
The temperature-dependent thermal conductivity theory originally developed
by Callaway (1959) and later modified by Holland (1963) and the steady-state
EPRT are used in this overview in order to test experimental results provided
by several researchers for doped and undoped single- and polycrystalline thin
dielectric films such as silicon and diamond. When using Holland’s model it is
assumed that the scattering mechanisms present for both doped and undoped
samples are U- and N-processes, grain boundaries, and defects. The fitting
parameters common to all cases are the defect scattering parameter A, the rms
grain boundary surface roughness h, and the maximum grain size dgðz ¼ LÞ:

It is noteworthy to mention that the scattering theory presented here was
able to provide good fitting approximations to most of the data of the silicon
films. In the case of single-crystal silicon films, a slight modification to the
definition of dg is needed in order to use the grain boundary equation. In
the case of single-crystal films, dg is the film thickness (dimension parallel to the
heat flow) and in the case of polycrystalline films dg is the average distance
between the intersections of grain boundaries with a straight line drawn on
a top-view electron micrograph of the film (dimension perpendicular to the
heat flow).

The experimental data show that the thermal conductivity of thin
dielectric films can be one to two orders of magnitude lower than that of the
bulk materials (Graebner et al., 1993; Lambropoulos et al., 1989). This has
pushed the area of thermophysical prediction of thin dielectric films into the
21st century. The well-documented and studied Fourier law was not able to
explain these experimental observations. Hence, other methods to predict the
thermal conductivity of thin films are being developed. The Cattaneo model
was able to explain the small-time behavior of experiments performed at
cryogenic temperatures. The EPRT (Majumdar, 1993) was able to explain the
small-time (Joshi and Majumdar, 1993) and spatial variations of thin
dielectric films. Solutions to this method have been proposed (Jen and
Chieng, 1998; Majumdar, 1993; Siegel and Howell, 1992), and the present
study develops the FEM.

Note that the FEM study of the EPRT identified deficiencies regarding the
heat flux computations that had not been reported previously (Anderson and
Tamma, 2002). While oscillations are observed for the FEM, they are quickly
removed by increasing the number of grid points. Although other stabilizing
techniques were attempted (i.e. upwinding), they did not remove the oscillatory
behavior, and further study is underway.

In understanding the different mechanisms of heat conduction in solids, the
C- and F-processes model is also depicted in order to provide a bridge between
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the slow Cattaneo (C-processes) and the fast Fourier (F-processes) limits. The
postulation used to describe the C- and F-processes model stems from the
understanding that within the distribution functions that arise from each
carrier processes, there exists a threshold frequency which separates high and
low energy processes.

By using the premise that there exists a threshold frequency separating
the low and high energy processes, emanating from the C- and F-processes
model, the Jeffreys model is, for the first time, also derived from the BTE. It
is important to be clear about the differences between the C- and F-processes
and the Jeffreys model. The Jeffreys model was originally thought to be a
linear combination of the Fourier and Cattaneo models (Tamma and Zhou,
1998); however, further investigations lead to the fact that the Jeffreys model
can only recover the Cattaneo model and a Fourier-like model with
relaxation (Anderson, 2001). On the other hand, the C- and F-processes
model is the first to recover exactly both the Fourier and Cattaneo models
and to provide meaningful physical explanation to the Jeffreys model as well
to introduce the dimensionless heat conduction model number. When the
combined form of the C- and F-processes model is used in the energy
equation, it leads to the generalized one-step temperature equation given by
the Jeffreys model.

Although the prediction of thermal conductivity in thin dielectric films is
well-developed using Holland’s and EPRT methods, detailed information on
the microstructure is needed for making the correct prediction of the
scattering rate times difficult. Often an experiment is needed for validating
these models. It appears that the MD method is more appropriate for use in
determining the thermal conductivity considering that the relaxation time is
not needed and also because of the ability to address the microstructural
elements of different material, especially polycrystalline films (Schelling et al.,
2002).

CNTs are an emerging source of several possibilities for applications in
several areas: carbon nanotube composites, electrochemical devices, hydrogen
storage, fuel cells, field emission devices, nanometer-sized electronic devices,
and sensors and probes (Baughman et al., 2002). The area has grown
remarkably in its 12 year existence and many more interesting applications are
likely to emerge.

In summary, the Fourier law is only valid in the macroscopic regimes for
both time and size domains. The Cattaneo and Jeffreys model although being
valid for microscopic time domains are only valid for macroscopic size
domains. The EPRT is valid for both microscopic time (Joshi and Majumdar,
1993) and size domains. Another model that possesses the ability to span the
microscopic time and size domains is the BD equation (Chen, 2001). It is
interesting to note that similar assumptions made by the C- and F-Processes
model are made in the BD model.
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